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SUMMARY 

Reflect ivi ty  measurements from 400 Mc/sec t o  10 kMc/sec on 2,200 1 
th ick  aluminum deposited on 1/2-mil-thick Mylar film show t h i s  material 
t o  be a very good re f lec tor  of radio waves. Measurements made under 
conditions of stress and temperature which would be encountered by a 
cammica t ions  sphere, such as Project Echo (1960 Io ta ) ,  showed very 
l i t t l e  deter iorat ion of the high re f lec t iv i ty .  
packaging e f f ec t s  a l so  caused very l i t t l e  r e f l ec t iv i ty  change. 
conditions of severe temperature cycling, aluminum removal and decreased 
r e f l e c t i v i t y  occurred. 

Construction seams and 
Under 

1, 
INTROD W T ION 

With the concept of a communications s a t e l l i t e  such as Project Echo 
(1960 Io ta ) ,  the  need arose t o  study the ref lect ive properties of the 
material  used t o  fabr ica te  the s a t e l l i t e .  Reference 1 is a theore t ica l  
study and a l so  r e fe r s  t o  experimental r e f l ec t iv i ty  measurements made on 
aluminum-coated Mylar. The purpose of the  work reported here was t o  
f ind  whether the  high r e f l e c t i v i t y  of this  material was l i k e l y  t o  be 
reduced i n  ac tua l  use. Therefore, r e f l ec t iv i ty  was measured i n  the 
laboratory under simulated operating conditions. Specifically,  it was  
of concern whether the imposed conditions of temperature and s t r e s s  
m i g h t  cause deter iorat ion of the s a t e l l i t e  r e f l ec t iv i ty  by cracking, 
s t ress ing,  or  otherwise a l t e r ing  the th in  aluminum film. Other possi- 
b l e  causes of decreased r e f l e c t i v i t y  investigated were the seams made 
during construction and the  folds  made during packaging. I n  addition, 
r e f l e c t i v i t y  was measured for  material  which had been del iberately 
par t i t ioned i n t o  isolated areas. Conditions f o r  which r e f l e c t i v i t y  
has not been tes ted  are s t r e s s  and temperature i n  vacuum and u l t r a -  
v io l e t  exposure. 
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SYMBOLS 

vector operator 

distance between 6-decibel points 

distance between minimum and 6-decibel points 

voltage forward wave 

voltage maximum 

voltage minimum 

voltage ref lected wave 

voltage a t  distance 8 from minimum 

charac te r i s t ic  impedance 

load impedance 

space impgdance 

wave guide impedance 

ref  l e  c t i v i  t y 

phase angle of forward o r  ref lected wave 

cutoff wavelength 

waveguide wavelength 

voltage standing wave r a t i o  

TEST CONDITIONS 

All r e f l e c t i v i t y  measurements were made i n  waveguides. Frequencies 
a t  which t e s t s  were made were 0.4, 1.5, 3.0, and 10 kMc/sec. 
ples were inser ted perpendicular t o  the waveguide axis  and were contacted 

Film sam- 
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on both s ides  by waveguide flanges. For each setup, a s ignal  generator 
w a s  coupled t o  the waveguide with sui table  isolation and matching, a 
s lo t ted  l i n e  w a s  used t o  measure the result ing standing wave rat io ,  and 
a terminated section w a s  used a f t e r  the sample t o  absorb the energy 
transmitted through the sample. Conditions fo r  the various t e s t s  are 
discussed i n  subsequent sections. 

Frequency 

A frequency range of 0.4 t o  10 kMc/sec covers the range f o r  most 
communication experiments. Reflectivity was measured a t  0.4, 1.5, 3.0, 
and 10 kMc/sec t o  cover t h i s  range. 
while the samples were being subjected t o  heat and s t ress .  Since the 
0.4 kMc/sec r e f l e c t i v i t y  values were unaltered by t h i s  treatment, the 
same samples were tes ted  a t  the remaining frequencies under ambient 
conditions. 

Tests were conducted a t  0.4 kMc/sec 

Heat and Stress 

It has been estimated (ref .  1) that  under the worst conditions the 
maximum temperature t o  be expected f o r  a Project Echo sphere i s  350' F. 
The skin s t r e s s  encountered w i l l  depend on the method of in f la t ion  but, 
f o r  the most severe method proposed, peak stresses of l e s s  than 
2,000 pounds per square inch are  expected. 

Temperature Cycling 

The poss ib i l i t y  of mechanically flaking the aluminum surface by 
contraction and expansion due t o  temperature cycling was considered. 
The temperature extremes f o r  an Echo type s a t e l l i t e  from sunlight t o  
Ear th ' s  shadow are  predicted (ref .  1) as -164O F t o  3500 F. Because of 
the equipment ava i l ab i l i t y  at  the t i m e  of the t e s t s ,  the temperature 
cycling w a s  done between Oo F and 3500 F. Two samples were tested; one 
sample w a s  cycled 44 times and the other 60 t i m e s .  These samples were 
temperature-cycled under un i l a t e ra l  spring stress which w a s  s e t  t o  
3,000 pounds per square inch a t  room temperature. 

Large conducting films used fo r  space communications would normally 
I n  the be constructed of many segments joined together i n  some fashion. 

case of the Project Echo sphere the present construction i s  82 gores 
which are  46 inches wide a t  the "equator" and taper  t o  36-inch-diameter 
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p o l e  caps. Thus, near the poles the  seams are l e s s  than 2 inches apart .  
The gores are  joined by bu t t  j o in t s  glued t o  1-inch-wide s t r ip s .  The 
d-c contact of such a jo in t  i s  poor but a t  high frequencies the capacity 
coupling through the s t r i p  i s  high. The calculated capacitive reactance 
is 0.6 ohm per square inch a t  400 Mc/sec for 1/2-mil-thick aluminum- 
coated Mylar films back t o  back. 
is on the  order of 1 ohm per square which i s  a fac tor  of 10 greater  than 
the calculated value based on the bulk r e s i s t i v i t y  of aluminum. 

The measured d-c res is tance of the  fi lm 

In order t o  t es t  experimentally the e f f ec t  of seams on r e f l ec t iv i ty ,  
two samples were obtained with "50-percent-seams. " The samples were 
fabricated by butting the edges of 2-inch-wide s t r i p s  of f i lm and taping, 
on the Mylar side, with 1-inch-wide heat-sealing aluminum-coated tape. 
These samples were tes ted  while the  seams were oriented both p a r a l l e l  
and perpendicular t o  the e l e c t r i c  f i e l d  i n  the waveguide. 

Handled Samples 

One i t e m  of concern w a s  deter iorat ion of r e f l e c t i v i t y  due t o  the 
wear the balloon received during fabrication, folding, packaging, and 
opening. 
as it i s  handled. 

The aluminum film i s  noted t o  develop a network of f i n e  creases 

In  order t o  investigate the e f f ec t s  of handling, one sample w a s  
subjected t o  average handling conditions and another sample w a s  handled 
as severely as  any portion of the balloon might conceivably be. These 
samples were prepared by the personnel who package the balloon and are 
ident i f ied i n  t ab le  I as average and severely handled samples. 

Par t i t ioned Samples 

To simulate f i l m  breakup, aluminum w a s  removed by scribing with 
an engraving t o o l  t o  create isolated conducting squares or islands.  
The scribed l i nes  were approximately 0.0005 Inch wide. Samples with 

1- - inch, 3-inch, and 6-inch squares were tes ted  at 400 Mc/sec. 1 
2 

EQUIPMENT 

Microwave Equipment 

Microwave r e f l e c t i v i t y  setups were made f o r  0.4, 1.5, 3.0, and 
10.0 kMc/sec. Figure 1 shows a typ ica l  component arrangement. Figures 2 
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and 3 are  photographs of the 400 Mc/sec and 10 kMc/sec equipment, respec- 
t ively.  
i n  order t o  increase sensi t ivi ty .  The receiver a lso acted as a nar- 
row band detector eliminating harmonics and spurious modes. 
400 Mc/sec waveguide equipment i s  fur ther  described i n  appendix I. 

A receiver w a s  used t o  measure the output of the s lo t ted  l i n e  

The 

Heating Equipment 

It w a s  desired t o  heat the f i lm uniformly t o  350' F temperature 
over the cross-sectional area of the 400 Mc/sec c i rcu lar  waveguide 
(21-inch diameter) while the f i l m  w a s  stressed and undergoing r e f l ec t iv i ty  
measurements. This heating w a s  accomplished by e l e c t r i c a l l y  heating the 
waveguide sections on both s ides  of the film. 
l/k-inch aluminum "back-up plate" which contacted the f i l m  outside the 
guide w a s  a lso heated t o  minimize thermal gradients a t  the waveguide 
circumference. One-half - m i l  Mylar diaphragms (uncoated) at  e i the r  end 
of the heated sections blocked convective heat flow and caused no notice- 
able reflections.  

A 4-foot diameter by 

The waveguide sections were f irst  wrapped with glass tape and then 
with nichrome wire i n  fiber glass  sleeving. A number of layers  of 
asbestos were added f o r  heat insulation. Amaximum power input of 
7,200 w a t t s  w a s  used which could bring the  f i l m  up t o  350' F i n  11 hours. 

2 

Stress  Equipment 

A method of simulating the skin s t r e s s  of the f u l l y  inf la ted bal- 

A method of stretching the f i lm uniformly i n  
loon Vas desired. 
f i lm surface w a s  needed. 
a l l  direct ions i n  the plane of the f i lm was approximated by cut t ing the 
samples i n  the form of Greek crosses and loading the outer edges uni- 
formly i n  the plane of the film. 

A i r  pressure methods were rejected because a f la t  

The d e t a i l s  of the s t r e s s  apparatus and f i lm mounting are shown i n  
figure 4. 
of objects i n  the foreground. 

Note tha t  the  images appearing on the f i lm are ref lect ions 

Temperature- Cycling Equipment 

Simulation of temperature-cycling conditions f o r  the Project Echo 
sphere could not be duplicated with available equipment. 
cycling t e s t s  which were conducted are considered t o  be more severe 
because of higher heating rates and l iqu id  immersion even though the 
temperature range i s  lower. 

The temperature- 
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The temperature- cycling equipment consisted of a 350' F glycerine 
Film samples 7 inches by 31 inches w e r e  bath and a 0' F alcohol bath. 

stretched over 1/2-inch-diameter r o l l e r s  on an aluminum j i g  and held i n  
tension by an adjustable spring. The samples were a l t e rna te ly  submerged 
i n  the 350° F bath and the 0' F bath with a r inse i n  room temperature 
water between each dip. The time i n  each bath w a s  approximately 20 sec- 
onds. The dimensions of the temperature-cycling baths made it impractical  
t o  obtain a sample large enough t o  be inser ted i n  the 400 Mc/sec waveguide. 

DISCUSSION 

Methods of Measurements 

The r e f l e c t i v i t y  i s  determined by measuring the voltage standing 
wave r a t i o  p resu l t ing  when a sample i s  inser ted i n  a waveguide. (See 
refs. 2 and 3.) &fore the sample i s  inserted,  the energy transmitted 
from the generator i s  absorbed a t  a re f lec t ion less  termination. After 
the sample i s  inserted, some energy passes through and i s  absorbed a t  
the termination while some i s  re f lec ted  a t  the film; thus, a standing 
wave i s  set up between the generator and sample. The voltage standing 
wave r a t i o  
voltage ( f i e l d )  along the waveguide. 

p i s  defined as the  r a t i o  of 'maximum voltage t o  minimum 

The ref lected wave V, adds t o  the forward wave Vf a t  the maximum 
and subtracts a t  the minimum. The r e f l e c t i v i t y  I' i s  defined as the  
fract ion of the forward wave reflected; t h a t  is, 
it can be shown t h a t  

Vr = r V f ,  from which 

P -  1 Irl = -  
P + l  

The r e f l e c t i v i t y  i s  re la ted  t o  the charac te r i s t ic  impedance of the 
medium Zc i n  which it i s  measured by 

r =  'r - 'c 
Z r  + Zc 

where Zr 
behind it. 
r be come s 

i s  the impedance of the material i n  p a r a l l e l  with the medium 
When the waveguide r e f l e c t i v i t y  i s  corrected t o  f r e e  space, 
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where G / Z s  
f i lm impedance i s  purely res i s t ive .  

i s  the r a t i o  of waveguide t o  free-space impedance and the 

For large values of 
i s  often used t o  determine I'. This method involves measuring the dis- 
tance on e i t h e r  side of the m i n i m u m  at  which the power i s  twice t h a t  a t  
the minimum. 
standing wave r a t i o  encountered, a method has been devised t o  determine 
p f o r  the distance a t  four times the minimum power. This measurement 
i s  cal led the "six-decibel method." A derivation is given i n  appendix I1 
which shows that ,  fo r  s m a l l  displacements, 

p(p > lo), the "twice minimum power" method 

Because of the very small distances a t  the high voltage 

where Ag i s  twice the distance between adjacent minima and 2 i s  
the distance between 6-decibel points above the minimum. 

Accuracy of Measurements 

The accuracy of measurement depends on the accuracy w i t h  which the 
probe movement and s ignal  leve l  change are measured and on the inherent 
l imitat ions of the method. The s ignal  level  change i s  measured within 
0.2 decibel which gives less than a 0.1-percent change i n  r e f l e c t i v i t y  
above 98 percent. 
t e r .  The resu l t ing  accuracy depends on frequency, being l e s s  than 
0.1 percent a t  400 Mc/sec and within 0.7 percent up t o  3 kMc/sec. A t  
10 kMc/sec, however, the required probe displacement f o r  measuring 
97-percent r e f l e c t i v i t y  i s  on the same order as the vernier  accuracy. 
Where t h i s  l imitat ion applies, the values are given as greater  than 
97 percent. 

The probe displacement i s  measured within 0.02 centime- 

The r e a l  l i m i t  t o  the accuracy of the measurements below 10 kMc/sec 
i s  the inherent l imitat ions of the method, t ha t  is, probe penetration 
variation, probe perturbation of f ie ld ,  waveguide nonuniformity, and so 
forth.  It i s  estimated t h a t  the absolute values are  good t o  1 percent 
and comparative values are accurate t o  w i t h i n  0.2 percent at  400 Mc/sec, 
0.4 percent a t  1.5 kMc/sec, and 0.7 percent a t  3 kMc/sec. 
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RESULTS 

Reflect ivi ty  of the samples as a function of frequency i s  given i n  
tab le  I. 
given as greater  than 97 percent without comparison between samples 
except f o r  the temperature-cycled samples. 
conducted while s t r e s s  and temperature w e r e  being imposed. 

The measurements a t  10 kMc/sec, es previously discussed, are  

The 400 Mc/sec t e s t s  were 

S t ress  

Reflect ivi ty  a t  400 Mc/sec w a s  measured as a function of s t r e s s  up 
t o  stress values of 4,000 pounds per square inch. 
(99.1-percent t o  99.2-percent r e f l ec t iv i ty )  w a s  within the experimental 
error.  From a number of t e s t s  a s l i gh t  trend was noticed f o r  higher 
r e f l e c t i v i t y  values under s t r e s s  but it w a s  f e l t  t h a t  even t h i s  small 
change was due t o  removal of wrinkles  and be t t e r  waveguide contact ra ther  
than t o  a material  r e f l e c t i v i t y  change. 

The var ia t ion  found 

Heating With Stress  

Film samples were cycled several  t i m e s  a t  temperatures up t o  3 6 5 O  F 
without a l t e r ing  the r e f l e c t i v i t y  a t  400 Mc/sec. 
a l so  varied up t o  1,600 pounds per square inch with the f i lm  at  elevated 
temperatures without causing a change. 

The skin s t r e s s  w a s  

Temperature Cycling 

Figure 5 shows a back-lighted photograph of a sample temperature 
cycled 60 times. 
t e s t s  were made, considerable aluminum removal occurred. Ref lec t iv i ty  
values between 82 percent and 94 percent were found f o r  areas with average 
aluminum removal. 

It i s  seen that ,  f o r  the conditions under which these 

For areas of the f i l m  as small as the cross-sectional area of the 
10 kMc/sec waveguide, wide var ia t ions i n  the amount of aluminum removed 
could be found; therefore, the 10 kMc/sec measurements were influenced 
by the area of the f i lm chosen. The 10 kMc/sec values given i n  tab le  I 
were f o r  areas which were judged t o  be average. These fi lms were a l so  
checked a t  the bes t  and worst spots and these r e su l t s  are given i n  
table  11. 
areas could be found t h a t  gave low ref lec t iv i ty .  

The average and bes t  conditions were reasonably high but 
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The r e su l t s  of these t e s t s  indicate that  random removal of aluminum 
such as shown i n  figure 5 does not severely decrease the re f lec t iv i ty .  
This type of ref lect ion i s  analagous t o  that obtained by using a w i r e  
mesh f o r  a ground plane and i s  i n  contrast t o  par t i t ioned sample r e su l t s  
where a small amount of aluminum removal resulted i n  nonconnected areas 
and low ref lec t iv i ty .  
damage should not grea t ly  reduce the re f lec t iv i ty .  

These r e su l t s  a lso show t h a t  micrometeoroid 

It should be emphasized t h a t  the heat-cycling t e s t s  reported here 
are  not representative of actual  space conditions and do not imply t h a t  
the aluminum f i l m  w i l l  deter iorate  i n  the  same manner when temperature 
cycled i n  space. 

seams 

The conducting backup s t r i p  used i n  seam fabricat ion i s  capacity 
Thus, coupled through the Mylar f i lm t o  both gores forming the seam. 

even i f  the gores do not touch, good e l ec t r i ca l  contact should prevai l  
a t  radio frequencies. If the seams are oriented so t h a t  current i s  not 
required t o  flow across them, t h e i r  presence should not be f e l t .  

Two samples, made w i t h  seams as described previously, were each 
tes ted  with the seams p a r a l l e l  and perpendicular t o  the e l e c t r i c  f i e ld .  
These r e su l t s  are  given i n  table  I which shows the r e f l e c t i v i t y  t o  be 
greater than 97 percent. A small but consistent difference w a s  noted 
between p a r a l l e l  and perpendicular orientation, the r e f l e c t i v i t y  f o r  the 
perpendicular or ientat ion being lower as  would be expected because of 
current flow patterns. 

Handled Samples 

The handled- sample measurements are cer ta inly subjective t e s t s  but 
the values of greater than 97 percent found for even the severely handled 
samples indicate t h a t  the handling received during packaging of the Echo 
balloons should cause no serious r e f l ec t iv i ty  decrease. 

Parti t ioned Samples 

The consistent high r e f l e c t i v i t y  values of a l l  samples except those 
temperature cycled led t o  an experiment t o  t e s t  the idea t h a t  par t i t ion ing  
o r  breaking up the conducting f i lm in to  islands would decrease the reflec- 
t i v i t y .  Such w a s  found t o  be the case as shown i n  table  111. 

These r e su l t s  indicated t h a t  breaking up the f i lm in to  nonconnected 
areas separated by approximately 0.0005-inch gaps does cause r e f l e c t i v i t y  
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deterioration and t h a t  the r e f l e c t i v i t y  decreases as the island s ize  
decreases. 

CONCLUDING REMARKS 

Reflect ivi ty  measurements were made from 400 Mc/sec to  10 kMc/sec 
on 2,200 8 thick aluminum deposited on 1/2-mil-thick Mylar film. H i &  
r e f l ec t iv i ty  values were found f o r  a l l  simulated-use conditions tes ted.  
Stress up t o  4,000 pounds per square inch, temperatures up t o  365' F, 
handling of the material  i n  a manner judged t o  simulate the most severe 
packaging conditions, and t e s t s  of samples containing a large number of 
seams gave r e f l e c t i v i t y  readings above 97 percent. Temperature cycling 
in l iqu id  baths caused lower r e f l e c t i v i t y  but the average values were 
s t i l l  above 82 percent. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field, Va., November 23, 1960. 
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APPENDIX I 

400 Mc/sec EQUIPMENT 

The 400 Mc/sec waveguide components were designed f o r  t h i s  specif ic  
project  and a re  b r i e f l y  discussed here. 
arrangement . 

Figure 1 shows the component 

Wave guide 

Circular waveguide w a s  chosen f o r  ease of fabrication. A diameter 
of 21  inches w a s  chosen t o  propagate only the fundamental. mode 
(See re f .  4. ) 
resis tance welded. 
of 21 f 1/16 inches. 
plate.  
ground t o  match. 

TE1,l. 
The waveguide w a s  ro l led  f r o m  0.032-inch aluminum and 

Cover flanges were made fraan l/k-inch aluminum 
Each section was 4 f e e t  long with an inside diameter 

Mating sections were bolted together and the inside Joints  

Slotted Line 

The s lot ted- l ine section w a s  ro l led  from l/k-inch-thick aluminum 
and w a s  a l so  4 f e e t  long. 
fastened on e i the r  side of a l/k-inch-wide s lo t  running t o  within 11 inches 

of e i the r  end of the section. 

One-half-inch-square aluminum bars were 

2 
This construction provided a very r i g i d  

1 

base f o r  the  probe carriage. ', 

Probe Carriage 

1 
4 The probe carriage w a s  machined from a block of brass 2- inches 

1 
2 

by 4 inches by 1- inches. This ra ther  massive type of construction of 

probe carriage (and slot ted- l ine section) gave smooth re l iab le  readings 
and w a s  found t o , b e  superior t o  an ear ly  model of l i gh te r  construction. 
Crystal detector and radio frequency output connectors were provided. 
The probe depth adjustment and e l e c t r i c a l  output design of the carriage 
borrow very l i b e r a l l y  from the design of the  General Radio type 87Lm 
s lo t t ed  l ine.  

1 



Terminat ion 

The termination w a s  a cone of microwave absorbent material  attached 
t o  a plexiglass frame. 
e t e r  (21 inches) t o  f i t  the waveguide. 
aluminum plate  which closed the end of the waveguide. 
ra t io  f o r  t h i s  termination w a s  1.06. 

This cone w a s  54 inches long with a base diam- 
The base w a s  attached t o  an 

The standing wave 

Coaxial Cable t o  Waveguide Adaptor 

A transverse e l e c t r i c  (TE1 , l )  mode exci ta t ion w a s  made by extending 
an antenna across the diameter of a waveguide section. The signal  w a s  
introduced a t  one end of the antenna and a shorting stub w a s  used on 
the other end t o  balance out the reactive component. A s l id ing  end p la te  
was provided t o  adjust  the radiat ion resistance. 



APPENDIX I1 

SIX-DECIBEL METHOD OF VOLTAGE STANDING WAVE RATIO 

It i s  desired t o  determine the probe displacement from the minimum 
a t  which the voltage i s  twice t h a t  at  the minimum (double voltage gives 
four times the power or  6 decibels). The vector sketch i l l u s t r a t e s  the 
r e l a t ion  between forward (Vf)  and reflected (Vr)  waves and t h e i r  
vector sums. 

vr V f  

Vf 

(a) A t  minimum condition (b) A t  an e l e c t r i c a l  distance 8 

A t  the minimum, 

Vmin = Vf + V, = Vf - rv, = V f ( l  - r) 

A t  a distance 8 radians, 

ve = vf(cos e + j s i n  e) + rvf(-cos e + j s in  e) 

I ve = vf[(l  - r)cos e + j(1 + r ) s i n  e 

For the magnitude of Ve t o  be twice the magnitude of Vmin. 



where 

2, 

14 

Substi tuting Vmin and V e  from these equations and simplifying yields  
the following relat ions:  

12vf(i - r)l = (1 - r)cos e + j(1 + r ) s i n  e 

I i + r  
121 = cos e + j - s i n  e I 1 - r  

121 = I cos e + j p  s i n  01 

2 = 4- cos 8 + p s i n  0 

2 2 2  4 = 1 -  s i n e + p s i n B  

3 = (p2 - l ) s in2  e 

Solving f o r  p2 yields  

Expressing i n  terms of distance ra ther  than radians, 

guide wavelength 

distance from minimum t o  6-decibel points 

I.'"". 3 + s i n  - 
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This expression can be simplified f o r t h e  case of small displace- 
ments since 

2% ZX 

b 3 3 + sin2 - = 

and 

from which 

Since the distance 2 i s  measured between the 6-decibel poin ts ,  

2 = 22, 

and 
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TABLE: I.- REFLECTIVITY MEASUREMENTS 

Sample 1 

Sample 

Sample 2 

Plain film 

t 

Sample Reflectivity, percent 1 

Seams: 
Seams perpendicular t o  

e l ec t r i c  f i e l d  
Seams para l le l  t o  

e lec t r ic  f i e l d  

~~ ~~ ~ 

61 1-- inch squares 
g ~ i n c h  squares 64 

1 
2 

i 6-inch squares 89 

Controlled handling: 
Severe 
Average 

Temperature cycled: 
Sample 1 (44 cycles) 
Sample 2 (60 cycles) 

0.4 kMc/sec 

Reflectivity, percent 

1.5 kMc/sec 

99.0 

98.2 

98.2 

98.2 
98.6 

89 
87 

i.0 kMc/sec 

99.0 

97.8 

98.5 

98.2 
98.5 

90 
82 

LO kMc/sec 

>97 

>97 

>97 

>97 
>97 

94 
94 

* Under various conditions of s t ress  and temperature. 

TABLE 11.- REFLECTIVITY OF TEMP~TURE-CYCLED FIW AT i o  kMc/sec 

Greatest aluminum removal 
Average aluminum removal 
Least aluminum removal 

77 
94 
95 

33 
94 
95 

T W  111.- REFLECTIVITY OF PARTITIONED FTM AT 400 Mc/sec 
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Figure 2.- Photograph of 400 Mc setup. L-60-42 
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